Which of the following equations is equivalent to y = lnx? A. x = y^e B. y = x^e C. y = e^y D. y = e^x

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Which of the following equations is equivalent to y = lnx? A. x = y^e B. y = x^e C. y = e^y D. y = e^x

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\(\large\ln(x)\) is same as \(\large\log_{e}(x)\)
Ok ok, so would I take the 'e' and sort of "bump" it over to the 'y' slot making e^y?
\(\large\color{black}{ \displaystyle y=\ln(x) }\) \(\large\color{black}{ \displaystyle y=\log_{e}(x) }\) then apply the rule: \(\huge\color{black}{ \displaystyle \color{red}{\rm a}=\log_{\color{green}{\rm b}}(\color{blue}{\rm c})~~~~~\Longrightarrow ~~~~~ \displaystyle \color{green}{\rm b}^{\color{red}{\rm a}}=\color{blue}{\rm c} }\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

this rule that I drew with many colors, is what you should use for your final answer.
actually, the way you wrote the options, none of them are correct-;(
Oh no ;(. Really?
you made a typo in your options. check them
but, do it without options and tell me what you get
I would first set it as \[y = \log_{e} x\] and then turn it into \[e ^{y} = x\]
Oh and option C should be x=e^y. Sorry
Was that right?
yes, that was right
well done
Yay! Thank you so much!!!

Not the answer you are looking for?

Search for more explanations.

Ask your own question