Is 3/3 actually 1? Because she I add 33.3333%+33.3333%+33.3333%. You get 99.9999%.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Is 3/3 actually 1? Because she I add 33.3333%+33.3333%+33.3333%. You get 99.9999%.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

3/3 is 1 cause its a fraction
1/3 is NOT 33.3333% It is 33.3333333333333333333333333.... and so on forever
Well, \[\frac{ 1 }{ 3 }\] is a repeating decimal. So 33.3333% is an approximation.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Ya but wouldn't the sum be 99.9999999repeating and never reach 100?
You raised a good point though since computer systems have to store repeating decimals as approximations in the form of a mantissa floating point, as per IEEE 754.
Ok cool, thanks.
There is argument that \(99.9999999999999999999999...\% = 100\%\) Or at least more commonly, \(0.999999999999... = 1\)
Well technically it IS 100%. Because otherwise THERE will be exists another value between 99.9999...% and 100%. What is this value? Not that I know of.
Ok cool thanks. :)
No problem.
\[x=.999999999999999999.... \\10x=9.99999999999999999999999........... \\ 10x-x=9 \\ 9x=9 \\ x=1\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question