anonymous
  • anonymous
Find the arc length by integration for y=e^x , y=e^-x x from 0 to 2 please help here
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
So you're looking for the arc length of two different curves over the same interval, or are you looking at a sort of closed loop?|dw:1433945291686:dw|
anonymous
  • anonymous
In either case, you can use the arc length integral formula. For a curve \(C\) defined by a differentiable function \(y=f(x)\) defined over an interval \([a,b]\), the arc length is given by \[\int_CdS=\int_a^b \sqrt{1+\left(\frac{dy}{dx}\right)^2}\,dx\] Consider the first curve: \(y=e^x\), so \(\dfrac{dy}{dx}=e^x\). The arc length \(L\) is then \[L=\int_0^2\sqrt{1+e^{2x}}\,dx\] You can compute the integral using a trigonometric substitution, \(e^x=\tan t\) such that \(e^x\,dx=\sec^2t\,dt\), or \(dx=\dfrac{\sec^2t}{\tan t}\,dt=(\cot t+\tan t)\,dt\). \[\begin{align*}L&=\int_{\pi/4}^{\arctan e^2}\sqrt{1+\tan^2t}\,(\cot t+\tan t)\,dt\\\\ &=\int_{\pi/4}^{\arctan e^2}\sec t(\cot t+\tan t)\,dt\\\\ &=\int_{\pi/4}^{\arctan e^2} \left(\csc t+\sec t\tan t\right)\,dt \end{align*}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.