anonymous
  • anonymous
Is the expression x^3•x^3•x^3 equivalent to x^3•3•3?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
jim_thompson5910
  • jim_thompson5910
Do you mean "Is the expression \(\large x^3*x^3*x^3\) equivalent to \(\large x^{3*3*3}\) ?"
anonymous
  • anonymous
Yes
jim_thompson5910
  • jim_thompson5910
One of the many algebraic rules is that \[\Large x^a*x^b = x^{a+b}\] notice how the exponents 'a' and 'b' are added together. They are NOT multiplied You can extend the rule out to as many exponents as you want \[\Large x^a*x^b*x^c = x^{a+b+c}\] \[\Large x^a*x^b*x^c*x^d = x^{a+b+c+d}\] \[\Large x^a*x^b*x^c*x^d*x^e = x^{a+b+c+d+e}\] etc etc just make sure that the bases are all the same number

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jim_thompson5910
  • jim_thompson5910
just make sure that the bases are all the same number or algebraic expression (like x or something)
anonymous
  • anonymous
Thank you very much!
jim_thompson5910
  • jim_thompson5910
no problem

Looking for something else?

Not the answer you are looking for? Search for more explanations.