anonymous
  • anonymous
Help! (k^2+8k+12) / (k^2 + 15k +54) * (k^2 +9k) / (k^2 +7k +10)
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
multiplying rational expressions
Nnesha
  • Nnesha
1st) factor all quadratic equations
Nnesha
  • Nnesha
\[\large\rm \frac{ k^2+8k+12 } { 9k^2 + 15k +54} * \frac{k^2 +9k} { k^2 +7k +10}\] factor all qudratic equation so you can cancel out some stuff do you know how to factor quadratic equations ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I got k/k+5 is that right?
anonymous
  • anonymous
wait can you explain what happens to this
anonymous
  • anonymous
|dw:1433974987628:dw|
anonymous
  • anonymous
Nnesha
  • Nnesha
what's the common factor k^2 + 9k ???
Nnesha
  • Nnesha
what is common in those both terms ?
anonymous
  • anonymous
They cross out once factored
Nnesha
  • Nnesha
alright k is common k^2 can be written as k times k \[\huge\rm k \times \color{ReD}{k} + 9\color{Red}{k}\] k is common so it out \[\large\rm \color{ReD}{k}(k+9)\]
Nnesha
  • Nnesha
\[\large\rm \frac{ k^2+8k+12 } { 9k^2 + 15k +54} * \frac{\color{Red}{k(k+9)}} { k^2 +7k +10}\] now can you factor quadratic equations k^2 +8k +12 ?
anonymous
  • anonymous
yes give me a sec
Nnesha
  • Nnesha
alright :-)
anonymous
  • anonymous
(k+6) (k+2) /(k+6) (k+9) * k (x+9) / (k+5) (k+2)
Nnesha
  • Nnesha
GREAT job!
Nnesha
  • Nnesha
i made a typo .-. :P \[\large\rm \frac{ k^2+8k+12 } { k^2 + 15k +54} * \frac{\color{Red}{k(k+9)}} { k^2 +7k +10}\] here is it k^2 +15k +54 ?? denominator of first fraction ?
Nnesha
  • Nnesha
yes it's i typed 9 instead of ( <-- parentheses sorry about that
Nnesha
  • Nnesha
\[ \huge\rm \frac{(k+6) (k+2)}{(k+6) (k+9) }* \frac{ k (x+9) }{ (k+5) (k+2)} \] cancel!
anonymous
  • anonymous
ok so k/x=+5
anonymous
  • anonymous
k/x+5
anonymous
  • anonymous
thanlks!!!
Nnesha
  • Nnesha
\[ \huge\rm \frac{\cancel{(k+6)} \cancel{ (k+2)}}{\cancel{(k+6)} \cancel{\cancel{(k+9)}} }* \frac{ k \cancel{(x+9)} }{ (k+5) \cancel{(k+2)}} \] \[\large\rm \frac{ k }{ k+2 }\] yep right!
Nnesha
  • Nnesha
my pleasure!! :-)
anonymous
  • anonymous
yay! thanks! super helpful
Nnesha
  • Nnesha
thanks great work!

Looking for something else?

Not the answer you are looking for? Search for more explanations.