HEEEEEEEEEEELPPPP! The sum of first three terms of a finite geometric series is -7/10 and their product is -1/125. [Hint: Use a/r, a, and ar to represent the first three terms, respectively.] The three numbers are _____, _____, and _____.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

HEEEEEEEEEEELPPPP! The sum of first three terms of a finite geometric series is -7/10 and their product is -1/125. [Hint: Use a/r, a, and ar to represent the first three terms, respectively.] The three numbers are _____, _____, and _____.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\frac{ a }{ r }*a*ar=-\frac{ 1 }{ 125 },a^3=\frac{ -1 }{ 125 }=\left( \frac{ -1 }{ 5 } \right)^3\] \[a=\frac{ -1 }{ 5 }\] \[terms~ are=\frac{ -1 }{ 5r },\frac{ -1 }{ 5 },\frac{ -r }{ 5 }\] \[-\frac{ 1 }{ 5r }-\frac{ 1 }{ 5 }-\frac{ r }{ 5 }=-\frac{ 7 }{ 10 }\] multiply each term by -10r and solve the quadratic formed for r complete it.
So I would literally multiply -1/5r by -10r? If so, does that cancel out the r that is in the denominator? This was from a previous unit in my math class that just got re-assigned so I don't remember any of it.
Or do I convert the denominators of the terms into -10r through finding the common denominator?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\(\Large\rm\color{darkviolet}{\sideset{_\star~^\star}{~~_\star~^\star}{_\star}\hspace{-56pt}\color{blueviolet}{\overset{^\star~~~_\star~~~_\star~~~^\star~~~_\star~~~^\star~~~^\star}{^\star~^\star~~~ \star~~~~_\star~\star~_\star~~~^\star}\hspace{-35pt}}\color{bluepurple}{\underset{^\star~~~^\star~~~\star~~~_\star~~~\star~~~^\star~~~_\star~~~}{\star}}}\hspace{96pt}\Large\rm\color{darkviolet}{\sideset{_\star~^\star}{~~~~~~^\star}{_\star}\hspace{-129pt}\color{blueviolet}{\overset{^\star~~~_\star~~~_\star~~~^\star~~~_\star~~~^\star~~~^\star}{^\star~^\star~~~ \star~^\star~~\star~~~_\star~~~^\star}\hspace{-159pt}}\color{bluepurple}{\underset{^\star~~~^\star~~~\star~~~_\star~~~\star~~~^\star~~~_\star~~~}{\star}}}\hspace{-165pt}\LARGE\rlap{\it\color{red}{W}\color{orange}{e}\color{gold}{l}\color{lime}{c}\color{blue}{o}\color{blueviolet}{m}\color{purple}{e}\color{orchid}{~t}\color{magenta}{o}\color{red}{~O}\color{orange}{p}\color{gold}{e}\color{lime}{n}\color{cyan}{S}\color{blue}{t}\color{blueviolet}{u}\color{purple}{d}\color{orchid}{y}\color{magenta}{!}}{\hspace{-1.5pt}\it\color{black}{Welcome~to~OpenStudy!}}\) \(\it\color{charcoal}{~~~~Please~be~sure~to~read~OpenStudy's~terms~listed~within~the~following~links:}\) \(~\hspace{1.5pt}\large\color{red}{_✧~}\huge\color{orange}{^✧~}\normalsize\color{gold}{✧~~}\Large\color{blue}{/)}\LARGE\color{blue}{_∧}\Large\color{blue}{/)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}\hspace{-3.5pt}\Large\color{blueviolet}{/)}\LARGE\color{blueviolet}{_∧}\Large\color{blueviolet}{/)~~~~}\hspace{-10pt}\large\color{gold}{^✧}\LARGE\color{orange}{_✧}\huge\color{yellow}{^✧}\)\(~~\Large\color{red}{~~_✧~~}\large\rm\color{blue}{O(}\Large\color{blue}{^}\color{blue}{_ヮ}\hspace{-2pt}\Large\color{blue}{^}\hspace{-2pt}\color{blue}{)o}\hspace{160pt}\Large\rm\color{blueviolet}{o(}\Large\hspace{-3pt}\color{blueviolet}{^}\color{blueviolet}{_ヮ}\hspace{-2pt}\Large\color{blueviolet}{^~}\hspace{-3pt}\large\color{blueviolet}{)O}\small\color{orange}{~_✧}\Large\color{gold}{~~^✧}\hspace{-235.7pt}\underset{\href{https:///openstudy.com/terms-and-conditions}{\hspace{0pt}\LARGE\it{\color{red}{\bigstar~T}}\color{orange}{e}\color{gold}{r}\color{lime}{m}\color{cyan}{s}\color{blue}{~a}\color{blueviolet}{n}\color{purple}{d}\color{orchid}{~C}\color{magenta}{o}\color{pink}{n}\color{red}{d}\color{orange}{i}\color{gold}{t}\color{lime}{i}\color{cyan}{o}\color{blue}{n}\color{blueviolet}{s}\color{red}{~\bigstar}}}{{\href{https:///openstudy.com/code-of-conduct}{\hspace{5.5pt}\large\it{\color{red}{\bigstar~C}}\color{orange}{o}\color{gold}{d}\color{lime}{e~}\color{cyan}{o}\color{blue}{f~}\color{blueviolet}{C}\color{purple}{o}\color{orchid}{n}\color{magenta}{d}\color{pink}{u}\color{red}{c}\color{orange}{t}\color{red}{~\bigstar}}}}\) \(~\small\color{red}{~~~~~~~~_✧~~~~}\hspace{0pt}\large\rm\color{blue}{O(")(")~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~}\hspace{0pt}\large\rm\color{blueviolet}{(")(")O}\small\color{red}{~~~~~~✧}\)
the idea is, it is free of denominator

Not the answer you are looking for?

Search for more explanations.

Ask your own question