A car going 50km/h can stop over 15m. On the same road, in what distance can the same car be stopped when its speed is 70km/h?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

A car going 50km/h can stop over 15m. On the same road, in what distance can the same car be stopped when its speed is 70km/h?

Physics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

the car can stop due to the work done by the friction forces. Now the magnitude R, of such friction forces are given by the subsequent fromula: \[\Large \frac{1}{2}m{v^2} = Rd\] where m is the mass of the car and d= 15 meters, v is the velocity of the car
so, solving that equation for R, we get: \[\Large R = \frac{{m{v^2}}}{{2d}}\]
now, when the speed of the car is v_1=70 km/h, then the subsequent equation holds: \[\Large \frac{1}{2}mv_1^2 = R{d_1}\] where d_1 is the new distance, and we have to compute it. Substituting for R, we get: \[\Large \frac{1}{2}mv_1^2 = \frac{{m{v^2}}}{{2d}}{d_1}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

finally, after a simplification, we can write: \[\Large {d_1} = d{\left( {\frac{{{v_1}}}{v}} \right)^2}\] where: \[\Large {v_1} = 70\;Km/h\]
please substitute your data into that formula and you will get the requested distance
There is a simple formula for an object in acceleration/ retardation: v^2=u^2+2aS Where ' v=final velocity ( 0 here, as it is stopping) u=initial velocity (50kmph= (50*5/18 )m/s here as that was the initial 'speed') a= the acceleration that is acting on the vehicle (unknown, we'll find it out) S= distance over which the acceleration works (15m) Putting these values: 0^2=(50*5/18)^2+2*a*15 We get a=-6.43004 (m/s^2) This is a constant as the breaks of the car shall provide constant acceleration. For the next case, we have v=0, u=70*5/18 m/s, a=-6.4301 m/s^2, s=unknown Putting values: 0^2=(70*5/18)^2+2*-6.4301*S S=29.3997 m

Not the answer you are looking for?

Search for more explanations.

Ask your own question