Lim x goes to 1 x^2-1/|x-1| anyone can find this limit?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Lim x goes to 1 x^2-1/|x-1| anyone can find this limit?

Calculus1
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\lim_{x\to 1}\frac{x^2-1}{|x-1|}\]
seems unlikely since this is is a piecewise function it is one thing if \(x>1\) and quite another if \(x<1\)
if \(x>1\) then \(|x-1|=x-1\) when you factor and cancel you get \[x+1\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

you get something else if \(x<1\) try it and see
I wonder if I should use left and right limit to do this
you have no choice but to do that, since \(|x-1|\) is a piecewise function which changes definition at \(x=1\)
lets take it step by step
if \(x>1\) then \(|x-1|=x-1\) right?
did i lose you there?
im here
if \(x>1\) then \(|x-1|=x-1\)so your function is \[\frac{x^2-1}{x-1}=\frac{(x+1)(x-1)}{x-1}=x+1\] making the limit as \(x\to 1^+=1+1=2\)
I see, now the left limit I guess
left limit is different because if \(x<1\) then \(|x-1|=1-x\)
so the limit doesnt exist right
no the two sided limit does not exist
i see
Thank you

Not the answer you are looking for?

Search for more explanations.

Ask your own question