anonymous
  • anonymous
The thickness of photoresist applied to wafers in semiconductor manufacturing at a particular on the wafer is uniformly distributed between 0.2035 and 0.2161 micrometers. a) Determine the proportion of wafers that exceeds 0.2125 micrometers of photoresist thickness
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

perl
  • perl
Did you try to use a uniform distribution for this problem?
anonymous
  • anonymous
i tried this, \[f(x)=\frac{ 1 }{ (0.2161-0.2035 )}\] \[f(x)=\frac{ 5000 }{ 63 }\] but i don't know the limits for the integral and i'm not sure if this is correct
perl
  • perl
the limit is from .2125 to the end of the domain .2161

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[\int\limits_{0.2125}^{0.2161}\frac{ 5000 }{ 63 }\] the answer is 0.2857
perl
  • perl
that's right
anonymous
  • anonymous
Yes! Thank you so much! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.