perl
  • perl
Tutorial: Using Pascal's Triangle for Binomial Expansion
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Pawanyadav
  • Pawanyadav
Yes Binomial theorem and Pascals triangle give the same result.
perl
  • perl
\[ \Large \text{If we expand \( (a+b)^n\) and look at the coefficients } \\ \Large \text{ of the terms, one sees a pattern emerge. } \\ \Large \text{ Here is what you get if we expand n=0,1,2,3 and 4. } \\~\\\Large { (a+b)^0 =~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 \\(a+b)^1 =~~~~~~~~~~~~~~~~~ 1a^1b^0 + 1a^0b^1 \\(a+b)^2= ~~~~~~~~~~~1a^2b^0 +\color{red}{}2a^1b^1 + \color{red}{}1a^0b^2 \\ (a+b)^3 = ~~~~\color{black}1a^3b^0 + \color{black}3a^2b^1 + \color{black}{}3a^1b^2 + \color{black}1a^0b^3 \\ (a+b)^4 = \color{black}1a^4b^0 + \color{black}4a^3b^1 + \color{black}6a^2b^2 + \color{black}4a^1b^3 + \color{black}1a^0b^4 }\]
perl
  • perl
\[ \Large{ \text{If we record only the coefficients themselves }} \\ \Large{ \text{we have what's called the Pascal's Triangle} } \] \[\color{black}{\Large { \begin{array}{rccccccccc} n=0:& & & & & 1\\ n=1:& & & & 1 & & 1\\ n=2:& & & 1 & & 2 & & 1\\ n=3:& & 1 & & 3 & & 3 & & 1\\ n=4:& 1 & & 4 & & 6 & & 4 & & 1\\ \end{array}}}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

perl
  • perl
\[ \Large{ \text{Example: Use Pascal's triangle to write the expansion } }\\ \Large{ \text{ for } (x+y)^6 \text{.} } \\ \Large \text{ Directions: First make an outline of 1's } \\\Large \text{ triangle, up to n = 6.}\] \[\color{black} {\Large { \begin{array}{rccccccccc} n=0:& & & & & & & 1\\ n=1:&& && & & 1 & & 1\\ n=2:&& && & 1 & & & & 1\\ n=3:&& & & 1 & & & & & & 1\\ n=4:&& & 1 & & & & & & & & 1\\ n=5:& & 1 & & & & & & & & &&1\\ n=6:& 1 & & & & & & & & &&&&1 \end{array}}}\] \[ \\ \Large{\text{To get inner terms add the two adjacent terms above.} }\] \[\color{black}{\large { \begin{array}{rccccccccc} n=0:& && & & & & 1\\ n=1:&& & & & & 1 & & 1\\ n=2:&& & & & 1 & & 2 & & 1\\ n=3:&& && 1 & & 3 & & 3 & & 1\\ n=4:&&& 1 & & 4 & & 6 & & 4 & & 1\\ n=5:& & 1 & & 5 & & 10 & & 10 & & 5 &&1\\ n=6:& 1 & & 6 & & 15 & & 20 & & 15 &&6&&1\\ \end{array}}}\]
perl
  • perl
\[\Large \text{Using the coefficients from the row n=6,} \\ \Large \text{ each term will have the form } Cx^k y^{n-k}, \\ \Large \text{ where \( C \) comes from the Pascal triangle.} \]\[ \Large{ (x+y)^6 = 1x^6y^0 +6x^5y^1 +15x^4y^2 + 20x^3y^3 + 15x^2y^4 \\ ~~~~~~~~~~~~~~~~~+ 6x^1y^5 + 1x^0y^6}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.