Help me please, Best answer given, Screenshot in the comments.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Help me please, Best answer given, Screenshot in the comments.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

is it like this? \[A=\frac{ k }{ 2(m+n) }\]
We're solving for m

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Ok, we will begin by stating the equation given: \[A=\frac{ k }{ 2 }(m+n)\] Now, this is what we can call a "parametric equation", why?, because we can see that it has variables that can represent a parameter in the area. When we solve for one of those variables, we treat everything else as if they were constants, meaning, they are just numbers, we don't pay attention to any further theory of them. So, we will begin by multiplying both sides by "" and also dividing by "k": \[(\frac{ 2 }{ k })A=\frac{ k }{ 2 }(m+n)(\frac{ 2 }{ k })\] \[\frac{ 2A }{ k }=(m+n) \] And then sustract "n" to both: \[\frac{ 2A }{ k }-n=m+n-n\] \[\frac{ 2A }{ k }-n=m\] By the conmmutative property of the number we can turn it around: \[m=\frac{ 2A }{ k }-n\] And simplifying that fraction: \[m=\frac{ 2A-kn }{ k }\]
Ohh thank you very much! that makes sense, thanks for not just giving me the answer.

Not the answer you are looking for?

Search for more explanations.

Ask your own question