anonymous
  • anonymous
Which of the graphs below correctly solves for x in the equation x^2 − 4x + 3 = x + 3?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
i have plugged the x coordinates of the points in the x of the function and only graph that has the point (0,3) and (5,8) work and made both sides equal .. and that's answer choices A , B and , C so please help me.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

lulubj
  • lulubj
http://assets.openstudy.com/updates/attachments/557a2a37e4b0636b8cc2f7da-doshka_syria-1434069633043-screenshot_1.png the second one here
anonymous
  • anonymous
@jim_thompson5910 @Luigi0210 @peachpi @ryamorgan284
anonymous
  • anonymous
Yes , i have uploaded them in order .. first one A and B and second one is C and D
lulubj
  • lulubj
Then, D
anonymous
  • anonymous
How? -5 doesn't work if you plug it in the function it doesn't make both sides equal.
UsukiDoll
  • UsukiDoll
this question only concerns the x-values... \[x^2-4x+3=x+3\]
UsukiDoll
  • UsukiDoll
we know 0 would work because \[(0)^2-4(0)+3=0+3 \] \[3=3\] but since there are multiple coordinates, we need to figure out if there is more than one x value that satisfies the equation
UsukiDoll
  • UsukiDoll
there's 2 intersections... for your choices... so there's more than 1 common point
anonymous
  • anonymous
right, and i have done that and only the points (0,3) and (5,8) do satisfie that function
UsukiDoll
  • UsukiDoll
\[(5)^2-4(5)+3=5+3\] \[25-20+3=5+3\] \[5+3=5+3 \rightarrow 8=8\] yeah that's correct...
UsukiDoll
  • UsukiDoll
\[(-5)^2-4(-5)+3=-5+3\] \[25+20+3 \neq -2\] \[48 \neq -2\]
anonymous
  • anonymous
i think it's the second graph because if you only graph f(x) = x+3 it will only give you a linear graph that it's line only matches the second one and the last one but since the last one doesn't satisfie the function it's not correct and it's B
UsukiDoll
  • UsukiDoll
it is the second graph.. the coordinates of (0,3) and(5,8)
anonymous
  • anonymous
the mistake that i have made when i tried to graph it .. i graphed it like this f(x)=x2 − 4x + 3 = x + 3 .. i should have done the left side as one graph and the second one as another graph and see the final image.
anonymous
  • anonymous
Thanks a lot for your time and help. @UsukiDoll
UsukiDoll
  • UsukiDoll
oh... you have to split them up like f(x) = x+3 f(x) = x^2-4x+3 and compare the two together to see if there's a common point.
anonymous
  • anonymous
aha , and that's what i did and the end
UsukiDoll
  • UsukiDoll
it helps to make a table like x f(x) = x+3 f(x) =x^2-4x+3 0 3 3 1 4 0
anonymous
  • anonymous
that's how i knew B and those two points match and the others don't
UsukiDoll
  • UsukiDoll
whenever you see the same number... it's a solution to both f(x) =x+3 and f(x) = x^2-4x+3
anonymous
  • anonymous
Yes.

Looking for something else?

Not the answer you are looking for? Search for more explanations.