Fan & Medal

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Fan & Medal

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

1 Attachment
Are you there ybarrap
Use the Inscribed Angle Theorem |dw:1434074532155:dw| https://www.mathsisfun.com/geometry/circle-theorems.html Use the fact that $$ 2\angle A=\text{Arc(B)} $$ So, $$ 2\angle E =\text{Arc(HGF)}\\ 2\angle G =\text{Arc(HEF)}\\ $$ The two arcs sum to 360 degrees because they go around once $$ \text{Arc(HGF)}+\text{Arc(HEF)}=360 $$ Substitute and solve. This shows that E and G are supplementary You do this now for H and F

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I'm not understanding this very well. GE and HF sum up to 360 so HF sums up to 180?
|dw:1434075832420:dw|
|dw:1434075935214:dw|
Here is another way to see this - http://www.geom.uiuc.edu/~dwiggins/conj44.html
im reading it two secs
@ybarrap I kind of get it now. So what do E and F equal and why?

Not the answer you are looking for?

Search for more explanations.

Ask your own question