anonymous
  • anonymous
Please Help!
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
jim_thompson5910
  • jim_thompson5910
|dw:1434074208924:dw|
jim_thompson5910
  • jim_thompson5910
|dw:1434074247695:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ok
jim_thompson5910
  • jim_thompson5910
the infinite geometric series converges if and only if |r| < 1
jim_thompson5910
  • jim_thompson5910
so if |r| < 1 is true, then it converges otherwise, it diverges
jim_thompson5910
  • jim_thompson5910
if it converges, then the infinite sum is S = a/(1-r)
anonymous
  • anonymous
and a=-4 right?
jim_thompson5910
  • jim_thompson5910
yep and r = -1/2
jim_thompson5910
  • jim_thompson5910
\[\Large \sum_{n=1}^{\infty} {\color{red}{a}}\left({\color{blue}{r}}\right)^{n-1}\] \[\Large \sum_{n=1}^{\infty} {\color{red}{-4}}\left({\color{blue}{-\frac{1}{2}}}\right)^{n-1}\]
anonymous
  • anonymous
so it would look like this?
1 Attachment
jim_thompson5910
  • jim_thompson5910
yeah because 1-r = 1-(-0.5) = 1+0.5
anonymous
  • anonymous
Thank you! can you help me with my last problem??
jim_thompson5910
  • jim_thompson5910
sure

Looking for something else?

Not the answer you are looking for? Search for more explanations.