andu1854
  • andu1854
Evaluate the following integral I will draw it out, but its set up like this: sin^2 x dx ---------- sqrt(1-cosx) I need help setting up what u will equal and going from there...
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
andu1854
  • andu1854
|dw:1434089857664:dw|
andu1854
  • andu1854
From here, I was able to conjugate the denominator to get: |dw:1434089965873:dw|
ganeshie8
  • ganeshie8
i think below identity might simplify the integrand \[1-\cos x ~=~ 2\sin^2(\frac{x}{2})\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ganeshie8
  • ganeshie8
also this \[\sin x ~~=~~2\sin(\frac{x}{2})\cos(\frac{x}{2}) \]
ganeshie8
  • ganeshie8
play wid them and see if you can get a nice looking expression for the integrand
anonymous
  • anonymous
@andu1854 I think you meant to multiply by the conjugate \(\sqrt{1+\cos x}\)? So you have \[\int_{\pi/3}^{\pi/2}\frac{\sin^2x}{\sqrt{1-\cos x}}\,dx=\int_{\pi/3}^{\pi/2}\frac{\sin^2x\sqrt{1+\cos x}}{\sqrt{1-\cos^2 x}}\,dx\] The denominator simplifies nicely: \[\sqrt{1-\cos^2x}=\sqrt{\sin^2x}=|\sin x|=\sin x\] where the last equality holds because \(\sin x>0\) for \(\dfrac{\pi}{3}\le x\le\dfrac{\pi}{2}\). The integral simplifies further: \[\int_{\pi/3}^{\pi/2}\frac{\sin^2x\sqrt{1+\cos x}}{\sin x}\,dx=\int_{\pi/3}^{\pi/2}\sin x\sqrt{1+\cos x}\,dx\] and you can deal with this using a simple substitution.

Looking for something else?

Not the answer you are looking for? Search for more explanations.