anonymous
  • anonymous
Which expression is equivalent to (sin x + 1)(sin x − 1)?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
cos2x -cos2x cos2x + 1 cos2x − 1 -cos2x + 1
Nnesha
  • Nnesha
foil!!
Nnesha
  • Nnesha
|dw:1434123061043:dw| multiply

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
D
P0sitr0n
  • P0sitr0n
First expand, then you can draw a conclusion: \[sin^2x-1=(1-cos^2x)-1=-cos^2x\]
Nnesha
  • Nnesha
nope how did you get that ?
P0sitr0n
  • P0sitr0n
also the expression is simply a difference of squares, so use the identity \[ (a-b)(a+b)=a^2-b^2\]
anonymous
  • anonymous
i am so confused if i foil i get D but you said no
P0sitr0n
  • P0sitr0n
\[sin^2x+cos^2x=1\] use that
Nnesha
  • Nnesha
foil yes what did you get after this ??
anonymous
  • anonymous
sin 2x -1
Nnesha
  • Nnesha
yes right now apply that identity sin^2 x + cos^2x =1 solve for sin^2x
Nnesha
  • Nnesha
\[\large\rm sin^2 x = 1-cos^2\] trig identity agree or no?

Looking for something else?

Not the answer you are looking for? Search for more explanations.