anonymous
  • anonymous
I have tried the method of finding equilibrium point, and then say X=x(t)-x*, where x* is the EP, yet I can't figure out the question below, how do they get the particular solution? The first part on eigenvalues, eigenvectors, the complimentary solution, I am all sorted, just the part on the particular solution. Please help.
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
What kind of techniques do you know? You can do this using undetermined coefficients.
anonymous
  • anonymous
i know all those, but then, will i handle each differential equation on its own, or simulteneously?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
You can work with the particular solutions either way. Individually, it might be easier, but we're given a quadratic expression, so we might as well work with them simultaneously. Let \(M=\begin{pmatrix}-1&-1\\-1&1\end{pmatrix}\). We'll use \({\bf x}_p=\vec{a}t^2+\vec{b}t+\vec{c}\) as our trial solution. \[{{\bf x}_p}'=2\vec{a}t+\vec{b}\] Substituting into the original system, we have \[2\vec{a}t+\vec{b}=M\left(\vec{a}t^2+\vec{b}t+\vec{c}\right)+\begin{pmatrix}1\\1\end{pmatrix}t^2+\begin{pmatrix}4\\-6\end{pmatrix}t+\begin{pmatrix}-1\\5\end{pmatrix}\]
anonymous
  • anonymous
Next we match up the corresponding power of \(t\). \[\begin{cases} \vec{0}=M\vec{a}+\begin{pmatrix}1\\1\end{pmatrix}\\ 2\vec{a}=M\vec{b}+\begin{pmatrix}4\\-6\end{pmatrix}\\ \vec{b}=M\vec{c}+\begin{pmatrix}-1\\5\end{pmatrix} \end{cases}\] then solve for \(\vec{a},\vec{b},\vec{c}\).
anonymous
  • anonymous
@SithsAndGiggles , YOU ARE A LIFE SAVER, thank you very Much!
anonymous
  • anonymous
You're welcome!

Looking for something else?

Not the answer you are looking for? Search for more explanations.