anonymous
  • anonymous
I have tried the method of finding equilibrium point, and then say X=x(t)-x*, where x* is the EP, yet I can't figure out the question below, how do they get the particular solution? The first part on eigenvalues, eigenvectors, the complimentary solution, I am all sorted, just the part on the particular solution. Please help.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
What kind of techniques do you know? You can do this using undetermined coefficients.
anonymous
  • anonymous
i know all those, but then, will i handle each differential equation on its own, or simulteneously?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
You can work with the particular solutions either way. Individually, it might be easier, but we're given a quadratic expression, so we might as well work with them simultaneously. Let \(M=\begin{pmatrix}-1&-1\\-1&1\end{pmatrix}\). We'll use \({\bf x}_p=\vec{a}t^2+\vec{b}t+\vec{c}\) as our trial solution. \[{{\bf x}_p}'=2\vec{a}t+\vec{b}\] Substituting into the original system, we have \[2\vec{a}t+\vec{b}=M\left(\vec{a}t^2+\vec{b}t+\vec{c}\right)+\begin{pmatrix}1\\1\end{pmatrix}t^2+\begin{pmatrix}4\\-6\end{pmatrix}t+\begin{pmatrix}-1\\5\end{pmatrix}\]
anonymous
  • anonymous
Next we match up the corresponding power of \(t\). \[\begin{cases} \vec{0}=M\vec{a}+\begin{pmatrix}1\\1\end{pmatrix}\\ 2\vec{a}=M\vec{b}+\begin{pmatrix}4\\-6\end{pmatrix}\\ \vec{b}=M\vec{c}+\begin{pmatrix}-1\\5\end{pmatrix} \end{cases}\] then solve for \(\vec{a},\vec{b},\vec{c}\).
anonymous
  • anonymous
@SithsAndGiggles , YOU ARE A LIFE SAVER, thank you very Much!
anonymous
  • anonymous
You're welcome!

Looking for something else?

Not the answer you are looking for? Search for more explanations.