anonymous
  • anonymous
Please help me with the question : show that Q[x]/(x^2-2) is not isomorphic with Q[x]/(x^2-3)
Algebra
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
misty1212
  • misty1212
hmm i think i remember this gimmick but it was with \(\mathbb{Q}(\sqrt2)\) and \(\mathbb{Q}(\sqrt3)\)
misty1212
  • misty1212
since they are the same thing, it must be the same the hint is to show that if you had such an isomorphims, since \(\phi(1)=1\) it must be the case that \(\phi(\sqrt2)=\sqrt2\) but \(\sqrt 2\notin \mathbb{Q}(\sqrt3)\)
anonymous
  • anonymous
you are right it is similar , but this one is little bit more trickier!

Looking for something else?

Not the answer you are looking for? Search for more explanations.