lizz123
  • lizz123
@Nnesha Simplify each expression. http://prntscr.com/7gaed3
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

lizz123
  • lizz123
|dw:1434148381810:dw|
Nnesha
  • Nnesha
sign http://prntscr.com/7gafxl
lizz123
  • lizz123
|dw:1434148529534:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Nnesha
  • Nnesha
mhm remember distribute last parentheses by negative one \[\large\rm \color{red}{-1}(x^4y^3+x^4y^4)=\color{red}{-1}(x^4y^3) ) \color{reD}{-1} (x^4y^4)\]
Nnesha
  • Nnesha
|dw:1434148785729:dw| it's 6y to the 3rd power you forgot 3 :-)
Nnesha
  • Nnesha
|dw:1434148834370:dw|
lizz123
  • lizz123
|dw:1434148834313:dw|
Nnesha
  • Nnesha
distribute last parentheses|dw:1434149272563:dw| by negative one
Nnesha
  • Nnesha
i made a type let me fixx that
Nnesha
  • Nnesha
\(\color{blue}{\text{Originally Posted by}}\) @Nnesha mhm remember distribute last parentheses by negative one \[\large\rm \color{red}{-1}(x^4y^3+x^4y^4)=\color{red}{-1}(x^4y^3) ) \color{reD}{-1} (x^4y^4)\] \(\color{blue}{\text{End of Quote}}\) supposed to be \[\large\rm \color{red}{-1}(x^4y^3+6x^4y^4)=\color{red}{-1}(x^4y^3) ) \color{reD}{-1} (6x^4y^4)\] now distribute -1 times 6x^4y^4 = -6x^4y^4 right negative times positive = negative
lizz123
  • lizz123
so would the answer be \[7x ^{3}-9x ^{4}y ^{4}-11x ^{4 }y ^{3}\]
Nnesha
  • Nnesha
yep! :-)

Looking for something else?

Not the answer you are looking for? Search for more explanations.