ganeshie8
  • ganeshie8
Show that there exist irrational numbers \(m,n\) such that \(m^n\) is rational.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ikram002p
  • ikram002p
let p,q be primes then \(\Large n=\sqrt {q}, m=\sqrt {p}\) i'd like p=2 it would make it much easy. so let \( \Large u=\sqrt{q} ^{\sqrt{2}}\) either way if its rational then done if its not rational then \(\large u^\sqrt 2 =(\sqrt{q} ^{\sqrt{2}})^\sqrt{2}=\sqrt q^2=q\) which is rational , how ever its ok to have p not equal 2 we would do these steps p times in general but as long we are talking about existence then its fine.
ganeshie8
  • ganeshie8
Brilliant!
ikram002p
  • ikram002p
do u have some other idea ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ikram002p
  • ikram002p
i think we can generate this to \( \Large \text{if } n,m \\\Large \text{are irrational then there exist rational r s.t }\\ \Large r=\sqrt[x]{m}^{\sqrt[y]{n}} \)
ikram002p
  • ikram002p
for any integers x,y

Looking for something else?

Not the answer you are looking for? Search for more explanations.