anonymous
  • anonymous
What is the value of x in the equation.... (logarithms), equation will be posted in comments
Algebra
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\log_{8}x + \log_{4}x = 10/3 \]
kc_kennylau
  • kc_kennylau
Firstly, the law: \[\Large\log_ab=\dfrac{\log_nb}{\log_na}\] Substitute \(\Large a=8\), \(\Large b=x\) to get: \[\Large\log_8x=\dfrac{\log_nx}{\log_n8}\]
kc_kennylau
  • kc_kennylau
Substitute \(\Large a = 4\), \(\Large b = x\) to get: \[\Large\log_4x=\dfrac{\log_nx}{\log_n4}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

kc_kennylau
  • kc_kennylau
What would be a reasonable \(\Large n\) to fit in?
anonymous
  • anonymous
10?
kc_kennylau
  • kc_kennylau
\[\Large \log_8x+\log_4x=\dfrac{10}3\] \[\Large \dfrac{\log_nx}{\log_n8}+\dfrac{\log_nx}{\log_n4}=\dfrac{10}3\] I would actually choose \(\Large n = 2\) because \(\Large 4=2^2\) and \(\Large 8=2^3\)
kc_kennylau
  • kc_kennylau
Let's use \(\Large n = 10\) anyway.
kc_kennylau
  • kc_kennylau
\[\Large \dfrac{\log_{10}x}{\log_{10}2^3}+\dfrac{\log_{10}x}{\log_{10}2^2}=\dfrac{10}3\]
anonymous
  • anonymous
I was debating whether to use 2, but I didn't know how to use the 2 to the power of 2 and 3 in the equation.
kc_kennylau
  • kc_kennylau
okay, let's use \(\Large n = 2\) then.
kc_kennylau
  • kc_kennylau
\[\Large \dfrac{\log_2x}{\log_22^3}+\dfrac{\log_2x}{\log_22^2}=\dfrac{10}3\]
kc_kennylau
  • kc_kennylau
\[\Large \dfrac{\log_2x}3+\dfrac{\log_2x}2=\dfrac{10}3\]
kc_kennylau
  • kc_kennylau
Are you able to find \(\Large \log_2x\) now?
anonymous
  • anonymous
Sorry, I'm not completely sure how to finish it.
anonymous
  • anonymous
Would we simplify them into one fraction?
kc_kennylau
  • kc_kennylau
Let's substitute \(\Large a \) as \(\Large \log_2x\).
kc_kennylau
  • kc_kennylau
The equation then becomes: \[\Large\frac a3+\frac a2=\frac{10}3\]
anonymous
  • anonymous
a=4?
kc_kennylau
  • kc_kennylau
Yes :)
anonymous
  • anonymous
x=16!
kc_kennylau
  • kc_kennylau
So \(\Large \log_2x=4\)
kc_kennylau
  • kc_kennylau
Yes :D
kc_kennylau
  • kc_kennylau
Smart boy/girl
anonymous
  • anonymous
Haha, girl - Thank you so much!
kc_kennylau
  • kc_kennylau
no problem :pp

Looking for something else?

Not the answer you are looking for? Search for more explanations.