anonymous
  • anonymous
Trig/ Pre Cal How do I determine what quadrant this is in? 2 owlbucks! \[ \tan^-1(\tan(\frac{5\pi}{6})) \] Thank you.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
It was suppose to be \[ \tan^1(\tan\frac{5\pi}{6}) \] I don't know how to make the -1 power so 1 = -1. It is an inverse
liamschumm
  • liamschumm
I'm not sure what you mean... You mean where it is on the unit circle?
liamschumm
  • liamschumm
Just a number does not have a "quadrant".

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Btw to make an exponent negative, just do tan^{-1} in latex :)
anonymous
  • anonymous
Yes. For instance, we have a domain of \( -\frac{\pi}{2}< x< \frac{\pi}{2} \) and range of \( -infinity< x< infinity \)
anonymous
  • anonymous
How do I find the quadrant that \( \frac{5\pi}{6} lies in?\)
anonymous
  • anonymous
Easy way is to just look at the unit circle http://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Unit_circle_angles_color.svg/2000px-Unit_circle_angles_color.svg.png
anonymous
  • anonymous
I know by looking at the unit circle but lets say we had a strange angle like \( \frac{4\pi}{5} \)
anonymous
  • anonymous
\[\large \frac{\pi}{5} = \frac{180}{5} = 36~degrees\]So \[\large \frac{4\pi}{5} = 4 \times \frac{\pi}{5} = 4 \times 36 = 144\] Since 144 is above 90 but below 180, it would be in quadrant 2 :) Also if the numerator is lower than the denominator, you know it will be in it either the first or second quadrants
anonymous
  • anonymous
Thank you!!
anonymous
  • anonymous
I sent your owlbucks :-)

Looking for something else?

Not the answer you are looking for? Search for more explanations.