A community for students.
Here's the question you clicked on:
 0 viewing
Ehsan18
 one year ago
Find the number of 5digit numbers that can be formed the digits 1,2,4,6,8 (when no digit is repeated) but,
i)the digits 2 and 8 are next to each other
ii)the numbers2 and 8 are not next to each other
Best and simplest solution gets a medal
Ehsan18
 one year ago
Find the number of 5digit numbers that can be formed the digits 1,2,4,6,8 (when no digit is repeated) but, i)the digits 2 and 8 are next to each other ii)the numbers2 and 8 are not next to each other Best and simplest solution gets a medal

This Question is Closed

ganeshie8
 one year ago
Best ResponseYou've already chosen the best response.1put 2, 8 in one bag : dw:1434301423566:dw

ganeshie8
 one year ago
Best ResponseYou've already chosen the best response.1then you see just \(4\) objects, which can be permuted in \(4!\) ways also 2,8 inside the bag can be permuted in \(2!\) ways for each of the above permutations so total possible 5 digit numbers using the given digits w/o repetition that contain 2,8 together would be \(4!\times 2!\)

Ehsan18
 one year ago
Best ResponseYou've already chosen the best response.1stunning @ganeshie8 what about part ii)? I also found the solution but the method was too long and complicated thanks but please answer the second part too....

Ehsan18
 one year ago
Best ResponseYou've already chosen the best response.1or is it like 5!  48?

ganeshie8
 one year ago
Best ResponseYou've already chosen the best response.1that will do for part ii!
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.