mathmath333
  • mathmath333
find the maximum value of
Linear Algebra
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mathmath333
  • mathmath333
find the maximum value of \(\large \color{black}{\begin{align} a^3\times b^2\hspace{.33em}\\~\\ \end{align}}\) if \(\large \color{black}{\begin{align} a+b=5\hspace{.33em}\\~\\ \end{align}}\) where \(\large \color{black}{\begin{align} \{a,b\}>0 \end{align}}\)
mathmath333
  • mathmath333
@mukushla
xapproachesinfinity
  • xapproachesinfinity
hmm AM-GM could work again! no?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yes, it works, note that\[a+b=\frac{a}{3}+\frac{a}{3}+\frac{a}{3}+\frac{b}{2}+\frac{b}{2}\]
xapproachesinfinity
  • xapproachesinfinity
oh no don't spoil it yet!
anonymous
  • anonymous
ok
anonymous
  • anonymous
I just gave you a hint
xapproachesinfinity
  • xapproachesinfinity
i have no clue how you achieved that though haha
xapproachesinfinity
  • xapproachesinfinity
oh i see silly me!
anonymous
  • anonymous
I made that partitioning so that we can form that \(a^3 b^2\) on the RHS of AM-GM
xapproachesinfinity
  • xapproachesinfinity
i'm trying to come from here first \[a^3b^2\le (\frac{a^3+b^2}{2})^2\]
anonymous
  • anonymous
what did you get?
xapproachesinfinity
  • xapproachesinfinity
i feel dumb! this what i did \[a^3b^2\leq a^2b\left (\frac{a+b}{2}\right )^2\] i still have trouble associating your hint with this
anonymous
  • anonymous
apply AM-GM with five numbers
xapproachesinfinity
  • xapproachesinfinity
hmm let see
xapproachesinfinity
  • xapproachesinfinity
oh i guess you actually give me the answer \[a^3b^2<27.4=108\]
xapproachesinfinity
  • xapproachesinfinity
oh hold on forgot roo 3
xapproachesinfinity
  • xapproachesinfinity
oh good still the same though
anonymous
  • anonymous
that's right\[\frac{\frac{a}{3}+\frac{a}{3}+\frac{a}{3}+\frac{b}{2}+\frac{b}{2}}{5} \ge (\frac{a}{3}.\frac{a}{3}.\frac{a}{3}.\frac{a}{3}.\frac{b}{2}.\frac{b}{2})^{1/5}\]
xapproachesinfinity
  • xapproachesinfinity
yeah that's what i did! man i would never thought of that manipulation
anonymous
  • anonymous
\[\frac{\frac{a}{3}+\frac{a}{3}+\frac{a}{3}+\frac{b}{2}+\frac{b}{2}}{5} \ge (\frac{a}{3}.\frac{a}{3}.\frac{a}{3}.\frac{b}{2}.\frac{b}{2})^{1/5}\]
anonymous
  • anonymous
ok, good questions, thanks guys

Looking for something else?

Not the answer you are looking for? Search for more explanations.