anonymous
  • anonymous
In the circuit shown, the greatest voltage drop will occur across which of the following resistors? R1, R2, R3, or R4 ?
Physics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Michele_Laino
  • Michele_Laino
at the first step the equivalent circuit is: |dw:1434309387712:dw| where R_0 is such that: \[\Large {R_0} = \frac{1}{{\frac{1}{{13}} + \frac{1}{{18}}}} = ...\]
anonymous
  • anonymous
ok! so we get 7.548 ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
ok! R_0=7.55 ohms
anonymous
  • anonymous
yay:)
Michele_Laino
  • Michele_Laino
now the current is: \[\large I = \frac{V}{{{R_{TOTAL}}}} = \frac{{15}}{{8.5 + 3.2 + 7.55}} = ...\]
anonymous
  • anonymous
so we get 0.779?
Michele_Laino
  • Michele_Laino
yes! we can round off that result to I=0.78 amperes
anonymous
  • anonymous
ok! what does that mean then?
Michele_Laino
  • Michele_Laino
now we have the subsequent voltage drop: \[\large \begin{gathered} {V_1} = {R_1}I = 8.5 \times 0.78 = ... \hfill \\ {V_{AB}} = {R_{AB}}I = 7.55 \times 0.78 = ... \hfill \\ {V_4} = {R_4}I = 3.2 \times 0.78 = ... \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
drops*
Michele_Laino
  • Michele_Laino
|dw:1434309867660:dw|
anonymous
  • anonymous
ok so we get 6.63; 5.889; 2.496?
Michele_Laino
  • Michele_Laino
that's right!
Michele_Laino
  • Michele_Laino
now please keep in mind that the voltage drops across R_2 and R_3 are the same, and both of them is equal to 5.889 volts
Michele_Laino
  • Michele_Laino
oops...both of them are equal to...
anonymous
  • anonymous
meaning that R4 would be the solution? since it is 3.2?
Michele_Laino
  • Michele_Laino
the greatest value is 6.63 volts
anonymous
  • anonymous
ok what does that mean? :/
Michele_Laino
  • Michele_Laino
that means the greatest voltage drop is across the resistor R_1
anonymous
  • anonymous
ohh okay:O sorry i got confused a bit! thank you:)
Michele_Laino
  • Michele_Laino
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.