Find the quotient. Write your answer in standard form. 3 + i / 3 - i A. -1 B. 1 - i C. 3/5 + 4/5 i D. 4/5 + 3/5 i

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the quotient. Write your answer in standard form. 3 + i / 3 - i A. -1 B. 1 - i C. 3/5 + 4/5 i D. 4/5 + 3/5 i

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

multiply top and bottom both by the conjugate of the denominator (3-i)
do you know the definition of conjugate ?
no. ): @Nnesha

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

conjugate example just change the sign of imaginary number a+bi conjugate is a-bi bi imaginary a= real so 3-i conjugate is what ?
3+i ?? @Nnesha
is it \[\frac{3+i}{3-i}\]?
if so, multiply top and bottom by the conjugate of the denominator the conjugate of \(a+bi\) is \(a-bi\) and this works because \[(a+bi)(a-bi)=a^2+b^2\] a real number
first step is \[\frac{3+i}{3-1}\times \frac{3+i}{3+1}\] which gives you \[\frac{(3+i)(3+i)}{3^2+1^2}\]
the denominator is evidently \(10\) and the numerator is whatever you get when you multiply that out
you good from there?
sorry typo there i meant "first step is \[\frac{3+i}{3-i}\times \frac{3+i}{3+i}\]
I got (9 + 6i + i^2) / (9 - i) I don't know where to go from there? @satellite73
ok lets back up, your denominator is wrong
Is it 9-i^2?
it is not \(9-i\) but rather \(9+1=10\) \[3-i\] has real part \(3\) and imaginary part \(-1\) when you multiply \[(3+i)(3-i)\] you get \[3^2+(-1)^2\] or \(10\)
you can write it that way if you want, but don't forget \(i^2=-1\) so \(9-i^2=9+1=10\)
So is i by itself 1?
you should really just be thinking that \[(a+bi)(a-bi)=a^2+b^2\] just like in pythagoras
no \(i\neq 1\) but \(i^2=-1\) and so \(-i^2=+1\)
probably the confusing part is how to interpret \(a+bi\) when you have \(3-i\) in that case \(a=3,b=-1\) of course when you square, you can ignore the minus sign
your numerator of \[9+6i+i^2\]is correct, but not complete since \(i^2=-1\) then \[9+6i+i^2=9+6i-1=8+6i\]
giving you an almost final answer of \[\frac{8+6i}{10}\] now cancel the common factor of 2 top and bottom
So it's D!! I UNDERSTAND!! Thank you so much. (:
yes it is D, and you are welcome

Not the answer you are looking for?

Search for more explanations.

Ask your own question