Rationalize the denominator and simplify.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Rationalize the denominator and simplify.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

1 Attachment
Hi, welcome to OpenStudy.
thanks

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

To rationalize the denominator, you must multiply the numerator and denominator by the conjugate of the denominator. What is the conjugate of \(\sqrt{a}-2\sqrt{y}\)?
you would just switch the subtraction to addition right?
how did you make that square root symbol
It's called latex. `\(\sqrt{a}\)` That's the code to do it. You can also use the equation button to do it easier :)
ok cool so wouldnt it be
\[\sqrt{a}+2\sqrt{y}\]
Correct!
So now, lets do the multiplication. \(\Large\frac{\sqrt{a}+2\sqrt{y}}{\sqrt{a}-2\sqrt{y}}\times \frac{\sqrt{a}+2\sqrt{y}}{\sqrt{a}+2\sqrt{y}}=?\)
Hint: \(\sf\Large (x+y)(x+y)=x^2+2xy+y^2\) \(\sf\Large (x+y)(x-y)=x^2-y^2\)
you lost me
Ok, lets multiply the numerators first. \(\sf\Large (\sqrt{a}+2\sqrt{y})\times (\sqrt{a}+2\sqrt{y})=?\)
Use the formula I gave you above.
\[\sqrt{a^2}+4\sqrt{y^2}\]
?
No...
\(\sf\Large (\sqrt{a}+2\sqrt{y})\times (\sqrt{a}+2\sqrt{y})=?\) Use the formula: \(\sf\Large (x+y)\times (x+y)= x^2+2xy+y^2\) remember: x, y, a, and b are all variables.
im lost
@Lyralei can you help me
Where are you lost at?

Not the answer you are looking for?

Search for more explanations.

Ask your own question