anonymous
  • anonymous
integral calculus: determine the length of the arc of the curve y=e^x from x=0 to x=1?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
L = ∫ sqrt(1 + (dy/dx)^2) dx
anonymous
  • anonymous
i dont get it maam
freckles
  • freckles
do you know what dy/dx means ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yes its the derivative
freckles
  • freckles
ok well as you can see the formula needs you to calculate that
geerky42
  • geerky42
To find length of arc, you use this: \[\int\sqrt{1+\left(\dfrac{\mathrm dy}{\mathrm dx}\right)^2}\mathrm dx\] Here, we have \(y = e^x\) Obviously, \(\dfrac{\mathrm dy}{\mathrm dx} = e^x\) So you have to evaluate \[\int\sqrt{1+\left(e^x\right)^2}\mathrm dx = \int\sqrt{1+e^{2x}}\mathrm dx \]
anonymous
  • anonymous
thanks sir
anonymous
  • anonymous
thanks for the clearer explanation @geerky42

Looking for something else?

Not the answer you are looking for? Search for more explanations.