Given sec(theta) = -4/3 and 90 degrees < (theta) <180 degrees ; find sin2(theta)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Given sec(theta) = -4/3 and 90 degrees < (theta) <180 degrees ; find sin2(theta)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

90 degrees < (theta) <180 degrees tells us that we are restricted in the 2nd quadrant... so all sine values are going to be positive...
If sec(theta) = -4/3 cos(theta) = -3/4 Use sin^2(x)+cos^2(x)=1 to solve for sin^2(x). Plug in -3/4 for cos(x), square it, and subtract the result from 1.
\[\sin^2x\] or \[\sin2x\] for the last part of the question. They have different meanings.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[\sin^2\theta............ \sin2\theta\]
its Sin2theta
alright... sin2theta has an identity \[2\sin\theta \cos\theta\]
given that sec(theta) = -4/3 sec(theta) =\[\frac{1}{-\frac{4}{3}} \rightarrow \frac{-3}{4}\]
it's negative due to the fact that we have the restriction of 90 degrees
|dw:1434340094426:dw| so we need to use the pythagorean theorem a^2+b^2=c^2
in this case we solve for a. a^2+3^2=4^2 a^2+9=16 a^2 = 16-9 a^2 = 7 a = \[\sqrt{7}\] ugh one problem... I know we can't pick the negative result for a because negative sides are nonexistent and doesn't make sense... I don't think decimals can be used either... not sure.
sec(theta) = -4/3 cos(theta) = -3/4 in 2nd quadrant hmmm... cos(theta) 3/4 = adjacent/hypotenuse and then solve for a... that should be ...why the heck do I have square root of 7 ? sine theta is \[\frac{\sqrt{7}}{4}\] ... I thought all sides are supposed to have whole numbers
It's perfectly possible to have a side length that isn't a whole number example: |dw:1434340852199:dw|
and I think you're thinking of this triangle |dw:1434340917667:dw|
O_O! really? so that sine is \[\frac{\sqrt{7}}{4} \] ??
yeah sin(theta) = sqrt(7)/4
use that to find sin(2*theta)
ok so all we need to do is solve \[\sin(2 \theta) = 2 \sin\theta \cos\theta\]
OP said sin 2 theta! No exponents.
sine is positive due to that 2nd quadrant restriction so \[2\times \frac{\sqrt{7}}{4} \times \frac{-3}{4}\]
\[2 \times \frac{-3\sqrt{7}}{16}\]
\[\frac{-6\sqrt{7}}{16}\]
\[\frac{-3\sqrt{7}}{8}\]
that's it.
Thank you. I was confused a bit but now I see where I messed up.
can you give me medal ^_^
sure :)
yay

Not the answer you are looking for?

Search for more explanations.

Ask your own question