anonymous
  • anonymous
In session 27, it is mentioned that the tangent plane should contain the tangent lines of the partial functions at point P. Does that not meant that the normal of the tangent plane is equal to the cross product of the tangent lines? If so, does it not contradict grad f = normal of tangent plane?
OCW Scholar - Multivariable Calculus
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

IrishBoy123
  • IrishBoy123
there should be no contradiction as \( \vec r = \) then \( \vec {r_x} = <1,0,f_x>\) and \( \vec {r_x} = <0, 1, f_y>\) and \(\vec {r_x} \ \times \vec {r_y}\) is \[\left|\begin{matrix}\hat x & \hat y & \hat z\\ 1 & 0 & f_x \\ 0 & 1 & f_y\end{matrix}\right|\] which is \(<-f_x, -f_y, 1>\) in terms of the gradient, it is important to note that it is NOT grad f that gives the normal but grad \(\Phi\) where \(\Phi = z - f(x,y) = 0\) thus \(\nabla \Phi = <-f_x, -f_y, 1>\), which is the same thing IOW \(\nabla \Phi \ne \nabla z\)
IrishBoy123
  • IrishBoy123
oops, typo, that second \( \vec{r_x}\) should *obviously* be \( \vec{r_y}\)
anonymous
  • anonymous
Thanks! I was being careless :(

Looking for something else?

Not the answer you are looking for? Search for more explanations.