anonymous
  • anonymous
In session 27, it is mentioned that the tangent plane should contain the tangent lines of the partial functions at point P. Does that not meant that the normal of the tangent plane is equal to the cross product of the tangent lines? If so, does it not contradict grad f = normal of tangent plane?
OCW Scholar - Multivariable Calculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
IrishBoy123
  • IrishBoy123
there should be no contradiction as \( \vec r = \) then \( \vec {r_x} = <1,0,f_x>\) and \( \vec {r_x} = <0, 1, f_y>\) and \(\vec {r_x} \ \times \vec {r_y}\) is \[\left|\begin{matrix}\hat x & \hat y & \hat z\\ 1 & 0 & f_x \\ 0 & 1 & f_y\end{matrix}\right|\] which is \(<-f_x, -f_y, 1>\) in terms of the gradient, it is important to note that it is NOT grad f that gives the normal but grad \(\Phi\) where \(\Phi = z - f(x,y) = 0\) thus \(\nabla \Phi = <-f_x, -f_y, 1>\), which is the same thing IOW \(\nabla \Phi \ne \nabla z\)
IrishBoy123
  • IrishBoy123
oops, typo, that second \( \vec{r_x}\) should *obviously* be \( \vec{r_y}\)
anonymous
  • anonymous
Thanks! I was being careless :(

Looking for something else?

Not the answer you are looking for? Search for more explanations.