Nerdgirl
  • Nerdgirl
Find the sum of the following series. (shown below) A. 240 B. 255 C. 210 D. 510
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Nerdgirl
  • Nerdgirl
|dw:1434376110688:dw|
Nerdgirl
  • Nerdgirl
@aloud that's not one of my answers @phi PLEASE HELP!
Nerdgirl
  • Nerdgirl
no you ditz it's not one of them don't you get it?! it's not one of the answer choices!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Nerdgirl
  • Nerdgirl
@phi
phi
  • phi
rewrite the problem \[\sum_{1}^{15}(2n+1)= 2\sum_{1}^{15}n+\sum_{1}^{15}1\]
phi
  • phi
There is a formula to add up the numbers from 1 to n do you know it? and the second sum means add up 15 1's (which hopefully you know how to do)
Nerdgirl
  • Nerdgirl
Mmm.... what would you say if I said I knew it but I couldn't remember it? :p
phi
  • phi
Gauss (famous mathematician), when a young kid in school was given the problem of adding up the numbers from 1 to 100, and he (clever fellow) saw a way to do it quickly. \[\sum_{k=1}^{n}k= \frac{ n(n+1) }{ 2 }\]
phi
  • phi
your problem has n=15 so use that formula with n=15 and n+1 = 16
Nerdgirl
  • Nerdgirl
so it would be 15 (greek symbol) k=1 (1) = 15 (16)/2? @phi
Nerdgirl
  • Nerdgirl
@phi
phi
  • phi
the sum of the numbers 1 to 15 is 15*16/2 = 15*8= 120 \[ \sum_{1}^{15}(2n+1)= 2\sum_{n=1}^{15}n+\sum_{n=1}^{15}1 \\ = 2(120) + \sum_{1}^{15}1 \] the sum of 15 ones is 15*1= 15 thus \[ \sum_{1}^{15}(2n+1)= 2\sum_{n=1}^{15}n+\sum_{n=1}^{15}1 \\ = 2(120) + 15 \] can you finish?
Nerdgirl
  • Nerdgirl
OMG ILY THANK YOU!!!!!!!!!!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.