anonymous
  • anonymous
Choose one of the factors of 27x^3 + 512y^3. 3 3x - 8y 9x^2 - 24xy + 64y^2 9x2 + 24xy + 64y2
Algebra
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Also, I will give a medal, and if you could teach me how to do it I would love it!
anonymous
  • anonymous
I am pretty sure it is 3x - 8y you will want to check to make sure though
anonymous
  • anonymous
Can you tell me how to get that answer?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
let me look more into it and I will get back to you
anonymous
  • anonymous
use the formula : a^3 + b^3 = (a+b)(a^2 - ab + b^2) 27x^3 + 512y^3 = (3x)^3 + (8y)^3 now, use the formula above to get of factors a^3 + b^3 = (a+b)(a^2 - ab + b^2) we have (3x)^3 + (8y)^3 it means a = 3x and b = 8y therefore, (3x)^3 + (8y)^3 = (3x+8y)((3x)^2 - 3x(8y) + (8y)^2) (3x)^3 + (8y)^3 = (3x+8y)(9x^2 - 24xy + 64y^2) so, it is C I found your problem already answered hopefully this helps.

Looking for something else?

Not the answer you are looking for? Search for more explanations.