anonymous
  • anonymous
A current of 3.20 A in a solenoid produces a magnetic field of 4.0 × 10^-3 T. The current is changed to 6.40 A. What is the magnitude of the magnetic field after the change? A. 1.0 * 10^-3 T B. 2.0 * 10^-3 T C. 8.0 * 10^-3 T D. 16 * 10^-3 T image drawn inside!!
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1434435467105:dw|
Michele_Laino
  • Michele_Laino
the magnitude of the magnetic field inside a solenoid , is given by the subsequent formula: \[\Large B = {\mu _0}\frac{{NI}}{L}\] where I is the current which flows along the solenoid, L is the xial length of the solenoid, N are the turns of our solenoid , and as usual: \[\Large {\mu _0} = 4\pi {10^{ - 6}}Henry/meter\]
anonymous
  • anonymous
ok! what does that translate into for this problem? :/

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
so we can write: \[\Large {B_1} = {\mu _0}\frac{{N{I_1}}}{L},\quad {B_2} = {\mu _0}\frac{{N{I_2}}}{L}\]
anonymous
  • anonymous
ok! what do we substitute in? :O
Michele_Laino
  • Michele_Laino
dividing side by side, we get: \[\Large \frac{{{B_1}}}{{{B_2}}} = \frac{{{I_1}}}{{{I_2}}}\]
Michele_Laino
  • Michele_Laino
now we have: I_1=3.20 A B_1=4.0 × 10^-3 T I_2=6.40 A so we can solve that equation for B_2, and we get: \[\Large {B_2} = \frac{{{I_2}}}{{{I_1}}}{B_1} = \frac{{6.4}}{{3.2}} \times 4 \times {10^{ - 3}} = ...\]
anonymous
  • anonymous
and we get 0.008?
Michele_Laino
  • Michele_Laino
that's right!
anonymous
  • anonymous
so would that mean choice A is the solution?
Michele_Laino
  • Michele_Laino
hint: 0.008 = 8*10^-3
anonymous
  • anonymous
ohh okay! so choice C! thank you:)
Michele_Laino
  • Michele_Laino
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.