anonymous
  • anonymous
Each side of a square loop of wire measures 2.0 cm. A magnetic field of 0.044 T perpendicular to the loop changes to zero in 0.10 s. What average emf is induced in the coil during this change? A. 1.8 V B. 0.088 V C. 0.88 V D. 0.00018 V
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
the magnetic flux change is: \[\Large \Delta \Phi = S \times \Delta B = {\left( {2 \times {{10}^{ - 2}}} \right)^2} \times 0.044 = ...Weber\]
Michele_Laino
  • Michele_Laino
\[\large \Delta \Phi = S \times \Delta B = {\left( {2 \times {{10}^{ - 2}}} \right)^2} \times 0.044 = ...Weber\]
anonymous
  • anonymous
1.76E-5? choice D is the solution?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
no, since we have to find the emf
Michele_Laino
  • Michele_Laino
more explanation:
anonymous
  • anonymous
ohh ok! how do we do taht?
Michele_Laino
  • Michele_Laino
before magnetic flux chnaging, the flux of the magnetic field through the square loop is: area*magnetic field=0.02*0.02*0.044 after the magnetic field changing the new magnetic flux through the square loop is: area*magnetic field=0.02*0.02*0=0 |dw:1434436897217:dw|
Michele_Laino
  • Michele_Laino
so the requested emf is: \[\Large E = \frac{{\Delta \Phi }}{{\Delta t}} = ...volts\] that is the Faraday-Neumann law
anonymous
  • anonymous
oh ok! what do we plug in? :/
rvc
  • rvc
emf= flux/area
Michele_Laino
  • Michele_Laino
no, emf= flux/time
rvc
  • rvc
oh ye
Michele_Laino
  • Michele_Laino
please apply the Faraday-Neumann law @rvc
anonymous
  • anonymous
what are we plugging in? :/
rvc
  • rvc
yes faradays law applies here :)
rvc
  • rvc
i just messed the equation :)
Michele_Laino
  • Michele_Laino
next step, is: \[\Large E = \frac{{\Delta \Phi }}{{\Delta t}} = \frac{{0.176 \times {{10}^{ - 4}}}}{{0.1}} = ...volts\]
Michele_Laino
  • Michele_Laino
no worries!! :) @rvc
anonymous
  • anonymous
1.76 E-4? so the solution is choice D?
Michele_Laino
  • Michele_Laino
that's right!
anonymous
  • anonymous
yay! thanks!:)
rvc
  • rvc
you are the BEST @Michele_Laino
Michele_Laino
  • Michele_Laino
:) @rvc

Looking for something else?

Not the answer you are looking for? Search for more explanations.