In triangle ABC, a = 3, b = 5, and c = 7. Find the approximate value of angle A.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

In triangle ABC, a = 3, b = 5, and c = 7. Find the approximate value of angle A.

Geometry
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Hint: cosine rule!
oh ok use the quadratic formula
22° 38° 142° 158° these are the answer choices

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[\frac{ -b+-\sqrt{(b)-4(a)(c)} }{ ?2(a) }\]
plug it in
ok one second
im still not understanding
In geometry, it always helps to draw a diagram according to the given information. |dw:1434459130639:dw|
cosine rule says: \(a^2=b^2+c^2-2(b)(c) cos(A)\) from which you can solve for cos(A): \(\Large cos(A)=\frac{b^2+c^2-a^2}{2bc}\) So you can substitute a,b,c into the equation and solve for angle A.
and what do you get when you that because i keepp getting something different
@jcwilliams504 What have you done so far?
i plugged in everything but i dont know how to solve
Do you know the values of a, b, and c?
3,5, and 7
Good, so what did you get for: \(\Large \frac{b^2+c^2-a^2}{2bc}\)
65/70 :/
That's correct. You can find the angle A by solving cos(A)=65/70=13/14 or A = cos\(^{-1}\)(13/14)
whats after that?

Not the answer you are looking for?

Search for more explanations.

Ask your own question