anonymous
  • anonymous
Kimiko and miko are playing a game in which each girl rolls a number cube. If the sum of the numbers is a prime number, then miko. Otherwise Kimiko wins. Find the sample space. how do you do this idk how to do this
Probability
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

ybarrap
  • ybarrap
The sum of two dice: 1 2 3 4 5 6 +------------------- 1 | \(\color{red}2\) \(\color{red}3\) 4 \(\color{red}5\) 6 \(\color{red}7\) 2 | \(\color{red}3\) 4 \(\color{red}5\) 6 \(\color{red}7\) 8 3 | 4 \(\color{red}7\) 6 \(\color{red}7\) 8 9 4 | \(\color{red}5\) 6 \(\color{red}7\) 8 9 10 5 | 6 \(\color{red}7\) 8 9 10 \(\color{red}{11}\) 6 | \(\color{red}7\) 8 9 10 \(\color{red}{11}\) 12 Count all \(\color{red}{\bf{Reds}}\), those are the prime numbers, \(p\) Count all the possibilities, 36 $$ P(Miko~wins)=\cfrac{p}{36}\\ P(Kimiko~wins)=1-\cfrac{p}{36}\\ $$ Miko wins if \(P(Miko~wins)>P(Kimiko~wins)\) That's it!

Looking for something else?

Not the answer you are looking for? Search for more explanations.