anonymous
  • anonymous
Which of the following represents the greatest energy transition from a higher energy level to a lower one? A. emission of a red photon of 770 nm B. emission of a green photon of 550 nm C. emission of a yellow photon of 590 nm D. emission of a blue photon of 450 nm
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
here we have to compute four energies, namely we have to apply this formula: \[E = \frac{{hc}}{\lambda }\]
anonymous
  • anonymous
ok!
Michele_Laino
  • Michele_Laino
so case red photon: \[E = \frac{{hc}}{\lambda } = \frac{{6.62 \times {{10}^{ - 34}}3 \times {{10}^8}}}{{770 \times {{10}^{ - 9}}}} = ...joules\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
i am confused... what does this mean? 10^-34 3 ?
Michele_Laino
  • Michele_Laino
oops.. sorry: \[E = \frac{{hc}}{\lambda } = \frac{{6.62 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{770 \times {{10}^{ - 9}}}} = ...joules\]
anonymous
  • anonymous
oh! okie! so we get 2.579E-19
Michele_Laino
  • Michele_Laino
that's right!
anonymous
  • anonymous
does that mean choice A is our soluition?
Michele_Laino
  • Michele_Laino
no, we have to to the same computation for other wavelength. case green photon: \[E = \frac{{hc}}{\lambda } = \frac{{6.62 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{550 \times {{10}^{ - 9}}}} = ...joules\]
anonymous
  • anonymous
ok! so we get 3.61E-19
Michele_Laino
  • Michele_Laino
that's right!
Michele_Laino
  • Michele_Laino
case yellow photon: \[E = \frac{{hc}}{\lambda } = \frac{{6.62 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{590 \times {{10}^{ - 9}}}} = ...joules\]
anonymous
  • anonymous
and we get 3.366E-19!
Michele_Laino
  • Michele_Laino
that's right!
Michele_Laino
  • Michele_Laino
finally, case blue photon: \[E = \frac{{hc}}{\lambda } = \frac{{6.62 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{450 \times {{10}^{ - 9}}}} = ...joules\]
anonymous
  • anonymous
4.42E-19!
Michele_Laino
  • Michele_Laino
that's right!
Michele_Laino
  • Michele_Laino
reassuming, we have these subsequent energies: 2.579E-19 J, 3.61E-19 J, 3.366E-19 J, 4.42E-19 J. which is the greatest one?
anonymous
  • anonymous
the last! so our solution is choice D?
anonymous
  • anonymous
oh wait oops sorry it is the first, right? so chocie A is our solution?
Michele_Laino
  • Michele_Laino
I think that 4.42 is greater than 2.579
anonymous
  • anonymous
but it is negative?
anonymous
  • anonymous
E-19? :/
Michele_Laino
  • Michele_Laino
that is an exponential, all our energies have 10^(-19) as exponential
anonymous
  • anonymous
oh so our solution is still choice D?
Michele_Laino
  • Michele_Laino
yes! that's right!
anonymous
  • anonymous
yay! thanks:)
Michele_Laino
  • Michele_Laino
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.