• Falling_In_Katt
In parallelogram ABCD, one way to prove that diagonals and bisect each other is to prove triangle AXB congruent to triangle CXD. Which triangle congruency theorem proves that the triangles are congruent? https://gordon.owschools.com/media/o_anageo_ccss_2014/2/img_geou04l20_12.gif A. Angle Side Angle (ASA) B. Side Side Side (SSS) C. Side Angle Side (SAS) D. Angle Angle Side (AAS)
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
  • mathmate
Hints: Based on the definition of a parallelogram is "A quadrilateral with both pairs of opposite sides parallel." (ref. http://www.mathopenref.com/parallelogram.html) you can show \(\angle ABD \cong \angle CDB\) \(\angle BAC \cong \angle DCA\) and finally \(mAB \cong mDC\) (takes a few steps). Try the above steps, and if they work, choose your answer. Note that if you use a different definition of a parallelogram, the result can be different.

Looking for something else?

Not the answer you are looking for? Search for more explanations.