Babynini
  • Babynini
Prove the identity (2tanx)/(x+tan^2x) = sin2x
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Babynini
  • Babynini
@freckles haha sorry me again..with more trig. I've gotten [(2tanx)/(1-tan^2x)][cos^2x]
Babynini
  • Babynini
Ah no, that's wrong. Let me try again xD
Babynini
  • Babynini
1) (2tanx)/(sec^2x)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Babynini
  • Babynini
Gasp!! I think I got it :) \[\frac{ 2tanx }{ 1+\tan^2x }\] \[\frac{ 2*\frac{ sinx }{ cosx } }{ \frac{ 1 }{ \cos^2x } }\] \[2*\frac{ sinx }{ cosx }*\frac{ \cos^2x }{ 1 }\] = simplify and cross out a few things 2sinxcosx
Babynini
  • Babynini
@ganeshie8 is this correct? :)
Babynini
  • Babynini
@jim_thompson5910
jim_thompson5910
  • jim_thompson5910
then you'd turn 2*sin(x)*cos(x) into sin(2x)
jim_thompson5910
  • jim_thompson5910
make sure to keep the right hand side the same the whole time
UsukiDoll
  • UsukiDoll
after you reach 2sinxcosx use the identity sin2x = 2sinxcosx and you'll have sin2x = sin 2x
UsukiDoll
  • UsukiDoll
wait... is there a typo somewhere? you had \[\frac{2tanx}{x+\tan^2x}\] in your original question and then all of a sudden I see \[\frac{2tanx}{1+\tan^2x}\] I am crossing fingers here because if that x+tan^2x turns out to be a typo then everything will work out
Babynini
  • Babynini
Right right, I just wanted to make sure the process was correct :)
Babynini
  • Babynini
um..the second one hahaa sorry yeah typo.
UsukiDoll
  • UsukiDoll
\[\frac{ 2tanx }{ 1+\tan^2x } = \sin2x \] \[\frac{ 2tanx }{ \sec^2x } =\sin 2x \] \[\frac{ 2\frac{sinx}{cosx} }{ \frac{1}{\cos^2x}} = sin2x \] \[2\frac{sinx}{cosx} \times \frac{\cos^2x}{1} = \sin 2x \] the cos x cancels out and 2/1 = 2 \[2sinxcosx = 2sinx \] using identity 2sinxcosx = sin2x \[\sin2x = \sin2x \]
UsukiDoll
  • UsukiDoll
your attempt is correct...just have to remember that there are A LOT of trig. identities.
Babynini
  • Babynini
Right...So I had it all right :) I just didn't do the last step to make it into sin2x.
Babynini
  • Babynini
thanks so much!!
freckles
  • freckles
very great work @Babynini
Babynini
  • Babynini
thank you :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.