anonymous
  • anonymous
Can somebody please help me with the following question: A book of mass 0.40 kg rests on a horizontal surface with which it has a coefficient of dynamic  friction of 0.50.    If this book is now pushed by an external horizontal force of 10 N, what will be its acceleration  immediately after it has started to move?     [Assume the gravitational field strength is 10 Nkg­1, that air resistance is negligible and that the  orientation of the book does not change.]
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Try to start with a free body diagram of the book in the instant it starts to move. What are the forces applied on it at that moment?
anonymous
  • anonymous
With your advice and some help from a textbook I think I have managed to come to an answer. I think its 20ms^-2 if I am not mistaken. Does anyone else agree?
anonymous
  • anonymous
I get exactly the same value for the acceleration :) good work!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
hint: here is the situation described in your exercise: |dw:1434687875634:dw| so we can write the subsequent vector equation: \[\Large {\mathbf{F}} + {\mathbf{R}} = m{\mathbf{a}}\] where \[{\mathbf{R}}\] is the friction force, namely: \[\Large R = {\mu _D}mg\] and \[\Large {\mu _D}\] is the dinamic friction coefficient. Now we can rewrite that equation in scalar form, so we get: \[\Large F - {\mu _D}mg = ma\] please solve for a, and you will get your answer

Looking for something else?

Not the answer you are looking for? Search for more explanations.