anonymous
  • anonymous
(Question Closed)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Interesting question, give me some minutes to look into it. Are you sure that's all there is to it ?
anonymous
  • anonymous
Ah, figured it.
anonymous
  • anonymous
It's quite simple really.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Let b1-5 be the 5 books in question and v1-10 be the values of each 10 weightings (I'm too lazy to write them down - v1 = 108, v2=112,v3=113 and so forth).
anonymous
  • anonymous
Let's write a system of equations now: b1+b2=v1 b1+b3=v2 b1+b4=v3 b1+b5=v4 b2+b3=v5 b2+b4=v6 b2+b5=v7 b3+b4=v8 b3+b5=v9 b4+b5=v10
anonymous
  • anonymous
Scratch that in the definition, b1-5 represents the weight of each of those 5 books. Regardless, now we have a system with 10 equations and 10 unknown variables which should be solved easily.
SolomonZelman
  • SolomonZelman
5C2=5!/(2! * (5-2)!)=5!/(2! *3!)=10 yes, just checking that there are ten possible combos:)
anonymous
  • anonymous
Easiest way to do it is to take 3 equations out of that bunch that use exactly 3 different variables. So let's say, these ones: b1+b2=v1 b1+b3=v2 b2+b3=v5 See ? 3 equations that only use 3 different variables. The system is solving itself now. Add the first two together: 2b1+b2+b3=v1+v2 And replace b2+b3 from the third equation 2b1+v5=v1+v2 And now you have b1=(v1+v2-v5)/2
anonymous
  • anonymous
Okay, didn't know that it was supposed to be a system of equations problem! I was almost prepared to do it manually) I think I kind of get the jist of it now. Thank you so much!
anonymous
  • anonymous
And from then onward, you can get b2 out of the first equation, and then b3 out of the second one and so forth.
anonymous
  • anonymous
Well, that's the beauty of mathematics! I didn't know either but once you start writing down the question in mathematical language things get so much clearer. The beauty of it is that there may very well be another way of solving it that we haven't figured yet. For the time being, this will do though.

Looking for something else?

Not the answer you are looking for? Search for more explanations.