anonymous
  • anonymous
What is the maximum height that the projectile will reach? Show your work H(t) = -16t2 + 60t + 100
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@SolomonZelman
SolomonZelman
  • SolomonZelman
Oh, don't use calculus. Find the vertex.
SolomonZelman
  • SolomonZelman
many people start doing a derivative on this problem, when all it need is algebra:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

SolomonZelman
  • SolomonZelman
Do you know how to re-write this in a vertex form ? (Note: since the leading coefficient of this quadratic is negative your parabola is opening down.)
anonymous
  • anonymous
I do not, But thanks because you just answered my other question xD
SolomonZelman
  • SolomonZelman
I answered your another question ?
SolomonZelman
  • SolomonZelman
In any case. I will show you the steps in general
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ f(x)=\displaystyle \color{red}{\rm a}x^2+ \color{green}{\rm b}x+ \color{blue}{\rm c} }\) \(\large\color{black}{ f(x)=\displaystyle \color{red}{\rm a}\left(x^2+ \frac{\color{green}{\rm b}}{\color{red}{\rm a}}x\right)+ \color{blue}{\rm c} }\) the number you need inside the parenthesis to complete the square is (b/(2a))^2 so we will do a trick. \(\large\color{black}{ f(x)=\displaystyle \color{red}{\rm a}\left(x^2+ \frac{\color{green}{\rm b}}{\color{red}{\rm a}}x+\left[\left(\frac{\color{green}{\rm b}}{\color{red}{\rm a}}\div 2\right)^2\right]-\left[\left(\frac{\color{green}{\rm b}}{\color{red}{\rm a}}\div 2\right)^2\right] \right)+ \color{blue}{\rm c} }\) I add a magic zero so to speak. \(\large\color{black}{ f(x)=\displaystyle \color{red}{\rm a}\left(x^2+ \frac{\color{green}{\rm b}}{\color{red}{\rm a}}x+\left[\frac{\color{green}{\rm b^2}}{\color{red}{\rm 4a^2}}\right] -\left[\frac{\color{green}{\rm b^2}}{\color{red}{\rm 4a^2}}\right] \right)+ \color{blue}{\rm c} }\) \(\large\color{black}{ f(x)=\displaystyle \color{red}{\rm a}\left(x^2+ \frac{\color{green}{\rm b}}{\color{red}{\rm a}}x+\frac{\color{green}{\rm b^2}}{\color{red}{\rm 4a^2}} \right)-\color{red}{\rm a}\left[\frac{\color{green}{\rm b^2}}{\color{red}{\rm 4a^2}}\right]+ \color{blue}{\rm c} }\) \(\large\color{black}{ f(x)=\displaystyle \color{red}{\rm a}\left(x+ \frac{\color{green}{\rm b}}{\color{red}{\rm 2a}} \right)^2-\color{red}{\rm a}\left[\frac{\color{green}{\rm b^2}}{\color{red}{\rm 4a^2}}\right]+ \color{blue}{\rm c} }\) \(\large\color{black}{ f(x)=\displaystyle \color{red}{\rm a}\left(x+ \frac{\color{green}{\rm b}}{\color{red}{\rm 2a}} \right)^2-\frac{\color{green}{\rm b^2}}{\color{red}{\rm 4a}}+ \color{blue}{\rm c} }\)
SolomonZelman
  • SolomonZelman
this is just me doing abstract thing..... you can look examples while I am finishing.
anonymous
  • anonymous
Thanks man, I appreciate it
SolomonZelman
  • SolomonZelman
\(\large\color{black}{ f(x)=\displaystyle \color{red}{\rm a}\left(x+ \frac{\color{green}{\rm b}}{\color{red}{\rm 2a}} \right)^2-\frac{\color{green}{\rm b^2}}{\color{red}{\rm 4a}}+\frac{\color{green}{\rm 4a\color{blue}{\rm c}}}{\color{red}{\rm 4a}} }\) \(\large\color{black}{ f(x)=\displaystyle \color{red}{\rm a}\left(x+ \frac{\color{green}{\rm b}}{\color{red}{\rm 2a}} \right)^2+\frac{\color{green}{\rm 4a\color{blue}{\rm c}}-\color{green}{\rm b}^2}{\color{red}{\rm 4a}} }\)
SolomonZelman
  • SolomonZelman
in this case the vertex is \(\large\color{black}{ \displaystyle \left(-\frac{\color{green}{\rm b}}{2\color{red}{\rm a}}~,~\frac{4\color{red}{\rm a}\color{blue}{\rm c}- \color{green}{\rm b}^2}{4\color{red}{\rm a}}\right) }\)
anonymous
  • anonymous
:/ Whats the highest though, Im confused.
SolomonZelman
  • SolomonZelman
don't use my abstract as a formula. if you try to perform the steps and don't know how to proceed then look at this. it is kind of outline. here are some help links: https://mathway.com/examples/Algebra/Conic-Sections/Finding-the-Vertex-Form-of-a-Circle?id=817 https://www.youtube.com/watch?v=XyDMsotfJhE
anonymous
  • anonymous
But you cant give me answer :( @SolomonZelman

Looking for something else?

Not the answer you are looking for? Search for more explanations.