Would the kinetic energy of a pendulum at the bottom of the ark during a swing be the same as the gravitational potential energy at the top of the swing?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Would the kinetic energy of a pendulum at the bottom of the ark during a swing be the same as the gravitational potential energy at the top of the swing?

Physics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

if you set the gravitational potential energy to be zero at the bottom, i.e. set height equal to zero for that point, in that case the value of kinetic energy at the bottom equals the value of potential energy at the top.
in the general case, since total energy is conserved, the total variation equals 0, so the variation in kinetic and potential energy must be related: \[\Delta E_{total}=\Delta K + \Delta U = 0\] so \[\Delta K =- \Delta U\] or \[K_{top}-K_{bottom} =U_{bottom}-U_{top}\]
Oh right! Because of the conservation of energy, right! Thank you :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yw!

Not the answer you are looking for?

Search for more explanations.

Ask your own question