anonymous
  • anonymous
• Provide an example of a trig function and describe how it is transformed from the standard trig function f(x) = sin x, f(x) = cos x, or f(x) = tan x
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
welshfella
  • welshfella
an example is the sine and the cosecant
anonymous
  • anonymous
@welshfella im confused
anonymous
  • anonymous
Taking the example of Welshfella, the Cosecant function derives from the reciprocal of the Sine function. That is: \[cscx = \frac{ 1 }{ \sin x }\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Why is the interval important when calculating the rate of change on a trig function? @Hoslos
anonymous
  • anonymous
Similarly, the Tangent function derives from the division of sine and cosine: \[tanx = \frac{ sinx }{ \cos x }\]
anonymous
  • anonymous
That is crucial, as the result of the trig function might give a zero in the denominator, which will make the function undefined. For instance, given the above formula for Tangent, I cannot include the root 90Degrees, because \[\frac{ \sin 90 }{ \cos 90 }=\frac{ 1 }{ 0 }=undefined\] Is that understandable?

Looking for something else?

Not the answer you are looking for? Search for more explanations.