anonymous
  • anonymous
x= float(raw_input("enter a number: ")) ans =0 while ans*ans*ans < abs(x): ans=ans+.01 if ans*ans*ans!= abs(x): print x, ' is not a perfect cube' else: if x<0: ans=-ans print "the cube of "+str(x)+' is '+str(ans) ## can anyone please let me know what have i done wrong and how to fix it. I replaced 1 with .01 for the incremental. now even if i enter a number that has a perfect cube, the program cannot identify it. i still want to use .01 incremental value
MIT 6.00 Intro Computer Science (OCW)
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
rsst123
  • rsst123
There you go! x = float(input("enter a number: ")) ans = 0 while (ans*ans*ans) < abs(x): ans= ans+.01 ans = round(ans, 1) if (ans*ans*ans) == x : print('the cube of ' + str(x) + ' is ' + str(ans)) else: print(str(x)+ ' is not a perfect cube')
anonymous
  • anonymous
val = float(raw_input("Enter a number: ")) ans = 0 while (ans**3) < abs(val): ans = ans + 0.01 print ans, 'is ans' # by adding this print statement you can see the value of ans each time the loop # executes. If you use the the value 9 as an input, you'll see that the last value of ans # is 2.09. But 2.09 * 2.0 9 * 2.09 = 9.129...... Since this value does not == 9. Then, # the program outputs that 9 is not a perfect square. if ans**3 != abs(val): print val, 'is not a perfect cube' else: if val < 0: ans = -ans print 'the cube of', val, 'is', ans # the solution to this problem is addressed by comparing the resulting 9.129... value # with the inputted value of 9 using an epsilon value. The comparison is: if 9.129 is # close enough to 9, then it (9) is a perfect square. This concept is covered in # lecture 3.

Looking for something else?

Not the answer you are looking for? Search for more explanations.