anonymous
  • anonymous
(_____)^2 = (csc x-1)(csc x+1) What is suppose to be in the blank? ***I know this is a trig identity and do not have my sheet with me. No online refrences are helping me***
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I know it has to be either tan x or cot x. My memory is not on my side today.
UsukiDoll
  • UsukiDoll
ok.. there are three trig identities. the most common is \[\cos^2x+\sin^2x=1\]
UsukiDoll
  • UsukiDoll
but there are two more equations.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Ok
UsukiDoll
  • UsukiDoll
\[1+\tan^2x=\sec^2x\] \[1+\cot^2x = \csc^2x \]
UsukiDoll
  • UsukiDoll
let's solve the right hand side of the equation to see who is the culprit lol xD so we expand \[(cscx-1)(cscx+1)\]
anonymous
  • anonymous
Haha ok
UsukiDoll
  • UsukiDoll
just use foil ... you will notice that O and I cancel out
anonymous
  • anonymous
Not familiar with FOIL (Sorry). My teacher calls it the "F word" (lol)
UsukiDoll
  • UsukiDoll
first outer inner last
UsukiDoll
  • UsukiDoll
\[(cscx-1)(cscx+1) = (cscx)(cscx)+(1)(cscx)+(-1)(cscx)+(1)(1)\]
UsukiDoll
  • UsukiDoll
fffffffff missed a sign on the last one should be +(-1)(1)
anonymous
  • anonymous
Oh ok! I think I see what you are getting at
UsukiDoll
  • UsukiDoll
\[(cscx-1)(cscx+1) = (cscx)(cscx)+(1)(cscx)+(-1)(cscx)+(-1)(1) = (cscx)^2+cscx-cscx-1\]
UsukiDoll
  • UsukiDoll
OY ! \[(cscx)^2+cscx-cscx-1 \]
UsukiDoll
  • UsukiDoll
the cscx-cscx cancels out
UsukiDoll
  • UsukiDoll
\[\csc^2x-1\]
anonymous
  • anonymous
Then we can add the 1 right?
UsukiDoll
  • UsukiDoll
do you remember \[1+\cot^2x = \csc^2x ? \]
UsukiDoll
  • UsukiDoll
what do I need to do have \[\cot^2x \] by itself
anonymous
  • anonymous
Yep!
anonymous
  • anonymous
subract the 1?
UsukiDoll
  • UsukiDoll
yes subtract on both sides..
anonymous
  • anonymous
Oh ok! So we just proved that cot^2 (x) is my answer right?
UsukiDoll
  • UsukiDoll
yeah
UsukiDoll
  • UsukiDoll
\[\cot^2x = \csc^2x-1\]
anonymous
  • anonymous
Would I just write it as cotx?
UsukiDoll
  • UsukiDoll
huh? you mean for (cotx)^2 = (csc^2x-1)
anonymous
  • anonymous
Yes
UsukiDoll
  • UsukiDoll
hmmm... if you don't forget this part \[\cot^2x = \csc^2x-1 \]
UsukiDoll
  • UsukiDoll
\[(cotx)^2 = (cscx)^2-1\] means the same
UsukiDoll
  • UsukiDoll
just don't write cot2x and csc2x-1 BIG NO NO!
anonymous
  • anonymous
Ok! Thank you for your time and teaching me!
anonymous
  • anonymous
if u observe the RHS, u see it results csc^2-1 there is also an identity saying that, cosec^2-cot^2=1 that implies cosec^2-1=cot^2...therefore theRHS is cot^2 therefore obviously LHS must be cot^2...therefore the answer is cot
UsukiDoll
  • UsukiDoll
^ done already lol
UsukiDoll
  • UsukiDoll
the term cosecant isn't used for the Pythagorean identities.
UsukiDoll
  • UsukiDoll
but there is one identity that is used beyond trig and that's the \[\cos^2x+\sin^2x = 1 \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.