dan815
  • dan815
Exponents, just wondering how people think of exponents and how they make sense of it Here are the basic rules \[(1) ~x^{int} = x*x*x..*x, x\] multiplied by itself int times \[(2)~x^{int1*int2}=(x^{int1})^{int2}\] \[(3)~x^{1/int2}= int2th\sqrt {x}\] \[(4)~x^{-int}=\frac{1}{x^{int}}\] \[(5)~x^{imaginary}=.....\]
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Nice to know :D
dan815
  • dan815
|dw:1434835896106:dw|
dan815
  • dan815
|dw:1434836114707:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I have no idea danny boy...Im still just a 10th grader ._.
AbdullahM
  • AbdullahM
What is this `int` ?
dan815
  • dan815
integer
dan815
  • dan815
ignore the last one, but im just curious how other people justify their power rules
AbdullahM
  • AbdullahM
Ah, that makes more sense. xD
AbdullahM
  • AbdullahM
This tutorial has some great explanation about the exponent rules: http://openstudy.com/study#/updates/545b7a88e4b0a717ff633e5d
zzr0ck3r
  • zzr0ck3r
I think of them as bad notation that is needed.
ikram002p
  • ikram002p
ok dan :3
dan815
  • dan815
haha
anonymous
  • anonymous
Just a LaTeX tip: use `\sqrt[n]{...}` to write \(n\)th roots, e.g. \(\sqrt[n]{\cdots}\)
Empty
  • Empty
\[\LARGE x^{e^{i 2\pi}}=\frac{x}{1}\] \[\LARGE x^{e^{i \pi}}=\frac{1}{x}\] \[\LARGE x^{e^{i \pi /2}}=1 | x\] \[\LARGE x^{e^{i 3\pi /2}}=x|1\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.