anonymous
  • anonymous
A 12.0 V battery is hooked up with three resistors (R1, R2, and R3) in parallel with resistances of 2.5 Ω, 7.0 Ω, and 15.0 Ω, respectively. Part 1: Draw a labeled circuit diagram for the circuit described using correct symbols. Part 2: Calculate the equivalent resistance. Part 3: Calculate the current passing through each resistor in the circuit. ***How do I do this?
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
the requested circuit is: |dw:1434903805092:dw|
anonymous
  • anonymous
so that is the drawing?
Michele_Laino
  • Michele_Laino
|dw:1434903890518:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
yes! I think so!
anonymous
  • anonymous
ok yay!! so that is it for part 1?
Michele_Laino
  • Michele_Laino
yes!
anonymous
  • anonymous
ookie yay!! and so now we go to part 2? how do we do that? :/
Michele_Laino
  • Michele_Laino
part #2 the equivalent resistance is: \[\Large \begin{gathered} {R_{EQUIVALENT}} = \frac{1}{{\frac{1}{{{R_1}}} + \frac{1}{{{R_2}}} + \frac{1}{{{R_3}}}}} = \hfill \\ \hfill \\ = \frac{1}{{\frac{1}{{2.5}} + \frac{1}{7} + \frac{1}{{15}}}} = ...Ohm \hfill \\ \end{gathered} \]
anonymous
  • anonymous
ok! so we get 1.640625?
Michele_Laino
  • Michele_Laino
that's right!
anonymous
  • anonymous
yay so that is our equivalent resistance? :O
Michele_Laino
  • Michele_Laino
it is 1.64 ohms
anonymous
  • anonymous
ooh okie yay!! so onto part 3!
Michele_Laino
  • Michele_Laino
the requested currents are: \[\Large \begin{gathered} {I_1} = \frac{{12}}{{2.5}} = ...Amps \hfill \\ \hfill \\ {I_2} = \frac{{12}}{7} = ...Amps \hfill \\ \hfill \\ {I_3} = \frac{{12}}{{15}} = ...Amps \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
|dw:1434904298434:dw|
anonymous
  • anonymous
ok! we get these values? 4.8 1.71 0.8 ?
Michele_Laino
  • Michele_Laino
correct!
anonymous
  • anonymous
yay!! and so we are finished with this problem? :O
Michele_Laino
  • Michele_Laino
yes!
anonymous
  • anonymous
ooh yay!! thank you!!:) onto the next!!
Michele_Laino
  • Michele_Laino
:) ok!

Looking for something else?

Not the answer you are looking for? Search for more explanations.