A puck of mass 300g is sliding along a friction-less patch of ice at 6.0m/s. It encounters a rough path of ice with the coefficient of friction of 0.1. How long will it take for the puck to stop and how far will it travel?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

A puck of mass 300g is sliding along a friction-less patch of ice at 6.0m/s. It encounters a rough path of ice with the coefficient of friction of 0.1. How long will it take for the puck to stop and how far will it travel?

Physics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

You can relate the distance it will travel \(d\) with the initial kinetic energy \(K_i\), using the Work-Energy theorem: \[\Delta K = K_f - K_i = W_{net}\] and considering that the only work to account for is the one made by the friction: \(W_{f}=f\times d\) with \(f=\mu mg\) the final kinetic energy will be zero, since that determines the moment it stops once you found \(d\) you can use kinematic to find the time it takes, you can calculate the acceleration knowing that the only force applied in the horizontal direction is friction.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question