melstutes
  • melstutes
Given: AB .BE = CB . BD Prove: Triangle ABC is similar to triangle DBE
Geometry
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
melstutes
  • melstutes
1 Attachment
melstutes
  • melstutes
Please help me
melstutes
  • melstutes
Thanks for trying

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Mertsj
  • Mertsj
I don't understand the given. Could you please type it correctly?
melstutes
  • melstutes
1 Attachment
melstutes
  • melstutes
I have not had Geometry, I watched a video explaining AA SAS and SS
Mertsj
  • Mertsj
\[(AB)(BE)=(CB)(BD)\] \[\frac{(AB)(BE)}{(BE)(BD)}=\frac{(CB)(BD)}{(BE)(BD)}\] \[\frac{(AB)}{(BD)}=\frac{(CB)}{(BE)}\]
Mertsj
  • Mertsj
So now we have established that corresponding sides have equal ratios.
Mertsj
  • Mertsj
Now use the fact that vertical angles are congruent and you have SAS similarity.
melstutes
  • melstutes
I knew about vertical angles
melstutes
  • melstutes
thanks
Mertsj
  • Mertsj
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.